A general “subtraction game” is specified by a number \(m \in \mathbb{N} \) and a finite set \(S \subseteq \mathbb{N} \) where \(m \) is called the initial game configuration and \(S \) constitutes the set of allowed moves. It is assumed that \(1 \in S \). A subtraction game \(\langle m, S \rangle \) is a two player game with the following rules:

- Initial setup: A pile of \(m \) coins is put on a table.
- Player 1 is the player that makes the first move.
- At every move, a player removes a number \(k \) of coins from the table so that \(k \in S \).
- The winner is the player that removes the last coin from the pile.

Task. Any subtraction game has a winning strategy for one of the two players. Write a program that takes as input the specification \(\langle m, S \rangle \) and returns the player that has a winning strategy (i.e., your program should return either “player 1” or “player 2”).

Extra Extra Credit: write an interactive program that allows a human to play with the computer a subtraction game. The program should offer to the user to select \(m \) and \(S \) as well as specify who is player 1 and player 2 (computer or human). If the computer has a winning strategy your program should always win over the user. If the user has a winning strategy, your program should always win if the user makes one wrong move.

In order to solve this problem you should consider the following:

- For each game \(\langle m, S \rangle \) there is a total of \(m + 1 \) game configurations corresponding to the number of coins left in the pile, i.e., elements of the set \(\{0, \ldots, m\} \).
- The game configuration graph of each game \(\langle m, S \rangle \) is a directed graph with \(m + 1 \) vertices \(V = \{0, \ldots, m\} \) and a set of edges \(E \) such that \((i, j) \in E \) if and only if \(i - j \in S \).
- Vertices can be labeled as P-positions or N-positions. A P-position means that the player that moved previously has a winning strategy or won the game, whereas an N-position means that the player that moves next has a winning strategy. Clearly the vertex 0 is a P-position. Labeling of other vertices in the graph is possible using the following two rules:
 1. A vertex is a P-position if all vertices that it can reach in one step are N-positions.
 2. A vertex is an N-position if it can reach a vertex that is a P-position in one step.
- Player 1 has a winning strategy if and only if vertex \(m \) is labeled as N-position.

Implementation hint. For the implementation, consider reusing your graph data-structure implemented in homework 5. Additionally, you may find the reverse graph and/or reverse BFS very useful.