Parallel Prefix

{Notes derived from S. Akl, *Parallel Computation: Models and Methods*, chapt. 4.}

Parallel Prefix (review): Given $X = \{x_1, x_2, ..., x_n\}$ and a binary associative operator \otimes, which is closed with respect to X, compute $x_1, x_1 \otimes x_2, x_1 \otimes x_2 \otimes x_3, ...$, where the k^{th} item $x_1 \otimes x_2 \otimes ... \otimes x_k$ is called the k^{th} prefix.

- **Binary:** $x_i \otimes x_j$
- **Closed:** $x_i \otimes x_j$ is in $X = \{x_1, x_2, ..., x_n\}$
- **Associative:** $(x_i \otimes x_j) \otimes x_k = x_i \otimes (x_j \otimes x_k)$
- **Note:** \otimes is not necessarily *commutative*, i.e., there is no requirement that $x_i \otimes x_j = x_j \otimes x_i$

Assume that \otimes is a *constant time* computable function.
Simple Examples of \otimes (discuss):

1. Addition, multiplication, max, or min
2. Concatenation (discuss what is wrong with this)
3. Logical operations on Boolean values

Lower Bound number of operations required to perform a complete parallel prefix operation is $\Omega(n)$ since the n^{th} prefix involves operating on n values.

Parallel Prefix Operation is sometimes referred to as *scan* or *sweep*.
RAM Algorithm: Demonstrate straightforward sequential algorithm. Discuss time and space.

Assumptions for Parallel Algorithms: Assume that the data in initially stored in contiguous memory locations - either in contiguous cells in the shared memory of a PRAM or in contiguous processors on a distributed memory machine. We will deal with linked lists at a later time. Note that this situation is analogous to the one just discussed for the **RAM**.
Parallel Prefix on the PRAM

1. Algorithm 1 (naive)
 a) Assume \(n \) processors, \(P_0, P_1, \ldots, P_{n-1} \), where processor \(P_i \) is associated with \(x_i \).
 b) Demonstrate recursive-halving type algorithm - combine pairs, then pairs of pairs, then
 c) for \(j = 0 \) to \((\log n)-1\) do
 for \(i = 2^j \) to \(n-1 \) do in parallel
 \[x_i \leftarrow x_{i-2^j} \otimes x_j \]
 end for
 end for
 d) Running time: \(O(\log n) \)
 e) Cost: \[c(n) = p(n) \times t(n) \]
 \[= n \times O(\log n) \]
 \[= O(n \log n) \]
 which is not optimal
2. Algorithm 2 (cost-optimal)
 a) Options for optimality:
 i) reduce running time to $O(1)$, while keeping the number of processors at n, or
 ii) reduce the number of processors by a factor of $\log n$, while keeping the running time at $O(\log n)$.
 b) Discuss an optimal 2-phase algorithm
 c) Cost optimal: Discuss the running time and number of processors
Maximum Sum Subsequence

Defn.: Given a sequence $X = < x_0, x_1, \ldots, x_{n-1} >$, find indices u and v, $u \leq v$, such that the subsequence $< x_u, x_{u+1}, \ldots, x_v >$ has the largest possible sum $x_u + x_{u+1} + \ldots + x_v$ among all such subsequences in X.

Note: if all values of X are positive, then trivial since the entire sequence is the solution.
RAM Solution:

1. Initialize the maximum to x_0
2. Solve the problem for $< x_0, x_1, \ldots, x_{i-1} >$
3. Extend the solution to include x_i. The maximum sum in $< x_0, x_1, \ldots, x_i >$ is the maximum of the following:
 a) The sum of a maximum sum subsequence in $< x_0, x_1, \ldots, x_{i-1} >$, which is referred to as Maxseen
 b) The sum of a subsequence ending with x_i (called Maxhere)

 $\text{Maxseen} \leftarrow x_0; \ u \leftarrow 0; \ v \leftarrow 0$
 $\text{Maxhere} \leftarrow x_0; \ q \leftarrow 0$

 for $i=1$ to $n-1$ do

 if $\text{Maxhere} \geq 0$

 then $\text{Maxhere} \leftarrow \text{Maxhere} + x_i$

 else $\text{Maxhere} \leftarrow x_i; \ q \leftarrow i$

 if $\text{Maxhere} > \text{Maxseen}$

 then $\text{Maxseen} \leftarrow \text{Maxhere}; \ u \leftarrow q; v \leftarrow i$

 end for

Discuss time and space of RAM algorithm.
PRAM Algorithm:

1. Compute the prefix sums \(\{s_0, s_1, \ldots, s_{n-1}\} \) of \(X = \{x_0, x_1, \ldots, x_{n-1}\} \).
2. Compute the **postfix** maximum so that for each \(i \), the maximum \(s_j, j \geq i \), is determined, along with the value \(j \). So, a postfix-max is computed that drags the index along with it. Let \(m_i \) denote the value of the postfix-max at positions \(i \), and let \(a_i \) be the associated index.
3. For each \(i \), compute \(b_i = m_i - s_i + x_i \). Note that this is the maximum prefix value of anything to the right minus the prefix sum plus the current value (which was in both terms so needs to be added back).
 - Show example with some data of positive and negative values chosen at random.
4. The maximum of these \(b_i \) represents the solution, where \(u \) is the index of the position where the maximum of the \(b \)'s are found and \(v = a_u \).
 - Discuss time, space, and number of processors. Discuss an efficient algorithm vs. an optimal algorithm. Also, discuss the implementation of this algorithm on network models (mesh).
Array Packing

Defn. Given an array of items, call it X, where some of the items are labeled, rearrange the array so that all of the labeled items come before all of the unlabeled items. That is, *pack* the labeled items at the front of the array. This problem is equivalent to sorting a set of 0s and 1s into nonincreasing order.

RAM Solution. Sort the items:
1. Discuss using a $\Theta(n \log n)$ time sort.
2. Discuss using a $\Theta(n)$ time modified counting sort (remember, need to rearrange the items, not just the labels). Discuss the need for an auxiliary data structure.
3. Discuss using the *partition* routine associated with quicksort (array version with pointers starting at both ends and each looking for an item that doesn’t belong and then swapping). Discuss the running time of this routine.
PRAM Solution:

1. Let each labeled item use a “1” for its value.
2. Let each unlabeled item use a “0” for its value.
3. Perform a parallel prefix sum on the values. Also, perform a parallel postfix to broadcast the value of the maximum of these values (i.e., the total number of labeled entries).
4. Each labeled entry now knows its position in the array.
5. Reverse the 1’s and 0’s and perform prefix-sum so that all unlabeled items now know their position w.r.t. the other unlabeled items. Add the max that was broadcast at the end of step 3 to this value to determine the overall position.
6. Move the labeled values to the positions determined in step 3. Move the unlabeled items to the positions determined in step 5.
• Discuss time and space on a PRAM.
• Discuss problems/possibilities on network models.
• Discuss traditional solution on a network model (sorting).
• Discuss why that isn’t typically done on the PRAM even though sorting can now be done in logarithmic time.
• Discuss problem of selection (determining the k^{th} item) from an array on a RAM (modification of quicksort/partition) to note that it uses packing in some sense.
Interval Broadcasting

Defn.: Given an array \(X \) of \(n \) elements, with a subset of the elements marked as “leaders,” broadcast the values associated with the leaders to the subsequent elements, up to, but not including, the next leader.

Show an example of an array layout with a subset of the elements marked, and then show the result of this operation.

Modification to normal parallel prefix:
1. Each leader in processor \(P_i \), which initially contains data element \(d_i \), creates the record \((i, d_i) \).
2. Each nonleader in a processor \(P_i \), which initially contains data element \(d_i \), creates the record \((-1, dummy) \).
3. The prefix operator \(\otimes \) is defined as:
 \[(i,a) \otimes (j,b) \rightarrow (i,a) \text{ if } j < i \]
 \[(i,a) \otimes (j,b) \rightarrow (j,b) \text{ otherwise} \]
Discussions:
1. Discuss the operator and its properties.
2. Discuss time, space, and cost on RAM, PRAM, Mesh.

Examples:
1. Do quicksort with prefix operations (RAM/PRAM).
 • Discuss running times.
2. Discuss modification of interval broadcasting to interval prefix computation, where the operator is applied to all of the elements within each interval. This requires a minor modification to the operation defined above.
 • Give examples in terms of some database applications.
Computational Geometry

- Brief discussion of the field.
- That branch of computer science concerned with designing efficient algorithms for solving geometric problems.
- Problems involve points, lines, polygons, and other geometric figures.
(Simple) Point Domination Query

Defn.: A point \(q_1 = (x_1, y_1) \) is said to dominate a point \(q_2 = (x_2, y_2) \) if and only if \(x_1 > x_2 \) and \(y_1 > y_2 \). Given a set \(Q = \{q_1, q_2, ..., q_n\} \) of planar points, find all points \(q \) that are **not** dominated by any \(Q \).

- Discuss the relevance of the problem.

\[\begin{array}{c}
\text{y} \\
\downarrow \\
\text{x}
\end{array} \]

Input:
1. A set of \(n \) points ordered by \(x \)-coordinate.
2. No two points have the same \(x \) or \(y \)-coordinate.
Point Domination Query Algorithm:

1. Perform parallel postfix with operator $max-y$.
2. All points q_i that have a greater y-coordinate than the postfix value $q_{i+1} \otimes \ldots \otimes q_n$, are the set of points that are not dominated by any others.

- Discuss time, space, and cost for RAM, PRAM, and Mesh.
Computing Overlapping Line Segments

Defn.: Assume that a set of n uniquely labeled line segments, all of which lie along the same horizontal line, are given. The representation is that each endpoint is represented by a record containing the x-coordinate of an endpoint, the label of the line segment, and a flag indicating whether the point is the Left or Right endpoint of the line segment. Further, assume that the $2n$ records are given ordered with respect to the x-coordinate of the records.
1. Give an efficient algorithm to determine whether or not the line segments completely cover the horizontal line in a given range \([A,B]\).
 a) Discuss RAM, PRAM, and Mesh.
 b) Discuss optimality in terms of time, space, and cost.

2. Give an efficient algorithm which will identify a point of the line that is covered by the most line segments under each of the following assumptions. (Note that such a point must necessarily be one of the given endpoints.)
 a) Discuss RAM, PRAM, and Mesh.
 b) Discuss optimality in terms of time, space, and cost.
Computing Cliques of Circular Arcs

Defn.: Given a sequence of arcs $R = \langle r_1 r_2 \ldots r_n \rangle$, find a point on the circle that has maximum overlap. That is, find a point q that has a maximum number of arcs that overlap it - notice that while q is not necessarily unique the maximum number of arcs that overlap a point is.

Input (for problem in its simplest form):
1. No arc is contained in any other.
2. No two arcs share an endpoint.
3. The endpoints of the arcs are given completely sorted is clockwise order.
 a) The tail point of an arc only appears following the head of its arc and the points are given so they go around twice.
 b) Note that each arc is represented by two points (records) in the sorted list.
 c) Draw example.
Algorithm: Associate with each head the value of +1 and with each tail the value of -1 and perform a prefix-sum on the array. (*Note:* this problem is similar to the parenthesis matching/nesting problem - point out the similarity.)

- Do time/space/cost analysis of RAM, PRAM, and Mesh.