Introduction to Parallel Algorithms and Architectures

RAM (Random Access Machine):

1. Memory
 a) Memory with M locations, where M is (large) finite number.
 b) Each memory location is capable of storing a piece of data.
 c) Each memory location has a unique location.

2. Processor
 a) A single processor operates under control of a sequential algorithm.
 b) The processor can load/store data from/to memory and can perform basic arithmetic and logical operations.

3. Memory Access Unit
 a) Creates a path from Processor to Memory
 b) Establishes a direct connection between memory and processor.
Each step of a RAM algorithm consists of:

1. **Read phase** - processor reads data from memory into register
2. **Compute phase** - processor performs basic operations in memory
3. **Write phase** - processor writes contents of register into memory

Time: discuss the time that it takes for each of these 3 phases - special attention to the time to access arbitrary location in memory. (Note: each register must be of size $\log M$ in order to accommodate distinct memory locations.)

1. Compute takes $O(\log \log M)$ time.
2. Memory access for individual access requires $O(\log M)$ time.
3. To process k memory accesses requires $O(k + \log M)$ time due to pipelining.
4. Since these terms don’t typically effect the running time analysis and comparison, we say a step takes $O(1)$ time, which is termed *uniform analysis*.
Figure 5-1 The RAM (random access machine) is a traditional sequential model of computation. It consists of a single processor and memory. The processor is able to access any location of memory in $\Theta(1)$ time through the memory access unit.

PRAM (Parallel Random Access Machine):

1. Processors
 - There are n identical processors (PEs), $P_1, P_2, ..., P_n$, each of which is identical to the RAM processor. Assume that n is (large) finite.

2. Memory
 - Common/Global memory with M locations, $M \geq n$

3. Memory Access Unit
 - similar to MAU of RAM, but allows any PE to get to any memory location

Two processors that want to communicate can use the shared memory as a bulletin board.
Figure 5-2 Characteristics of a PRAM (parallel random access machine). The PRAM consists of a set of processing elements connected to a global memory through a memory access unit. All memory accesses are assumed to take $\Theta(1)$ time.

Each step of a PRAM algorithm consists of:

1. **Read phase** - up to \(n \) PEs may simultaneously perform one read from Memory to its local memory (i.e., a register)
2. **Compute phase** - every processor is entitled to perform a (small) fixed number of logical or arithmetic operations on the contents of its local memory (registers)
3. **Write phase** - up to \(n \) PEs may simultaneously write a value in its local memory (i.e., a register) to the global/common memory.

Note: “up to” means that there may be reasons why some PEs don’t want to perform the operation (they might be masked out or the read/write may be conditional).
Memory Access:

1. Exclusive Read (ER)
2. Concurrent Read (CR)
3. Exclusive Write (EW)
4. Concurrent Write (CW)
 a) Priority CW - only PE with highest priority succeeds
 b) Common CW - all PEs writing to the same location must write the same value
 c) Arbitrary CW - one PE, chosen arbitrarily, succeeds
 d) Combining CW
 i) Arithmetic functions - SUM, PRODUCT
 ii) Logical functions - AND, XOR
 iii) Selection/Semigroup - MAX, MIN

Common Models of PRAM:
Overview of Parallel Algorithms & Architectures

1. CREW
2. EREW
3. CRCW
4. ERCW (impractical)

Time:

1. Compute - each processor is same as a RAM and the instruction set is identical, so the time is the same: \(O(\log \log M) \)
2. Read/Write - if Memory Access Unit is implemented as combinational circuit, then the access time is \(O(\log M) \), though pipelining can again improve things.

For similar reasons in terms of comparison of running times, choose each step of a PRAM to take unit time, i.e., \(O(1) \) time.
PRAM Notes:
1. The PRAM is not a physically realizable machine.
2. It is a powerful model for studying the logical structure of parallel computation without worrying about communication.

PRAM Examples:

1. Minimum - bottom-up tree-like computation
2. Broadcast - top-down tree-like computation (ER) or CR
3. Search (Exercise)
4. Parallel Prefix: Given \(x_1, x_2, ..., x_n \) and a binary associative operator \(\otimes \), compute \(x_1, x_1 \otimes x_2, x_1 \otimes x_2 \otimes x_3, ... \) where the \(k^{th} \) item \(x_1 \otimes x_2 \otimes ... \otimes x_k \) is called the \(k^{th} \) prefix.

For Arrays only (not linked lists) do:
 i) Running Sum
 ii) Running Minimum
Figure 5-5 Improving the performance of a PRAM algorithm by requiring each of $n/\log n$ processors to be responsible for $\log n$ data items.

Distributed Memory vs. Shared Memory: General Discussion

- **Shared Memory**
 - in general, shared memory machines don’t scale well
 - unit-time access cannot be preserved

- **Distributed Memory**
 - scales better
 - typically involves message passing

Distributed Address Space vs. Shared Address Space:

General Discussion

- permits shared memory programming and concepts
- can involve physically shared memory or physically distributed memory
A traditional *shared-memory machine* is presented on the left, in which all processors operate through an interconnection network and have equal unit-time access to all memory locations. A traditional *distributed-memory machine* is presented on the right, in which every processing element (processor and memory pair) communicates with every other processing element through an interconnection network.
Interconnection Networks:

1. Measures

 a) Degree of the network - i.e., maximum degree of any PE in the network.
 b) Communication Diameter - maximum of the minimum distance between any pair of PEs.
 c) Bisection Width - minimum number of wires that have to be removed (severed) in order to disconnect the network into 2 “equal” size subnetworks.
 d) I/O bandwidth - usually not critical as typically assumed that data already resides in machine.
 e) Time to perform basic operations (min, sum)
2. Processor Organizations

 a) PRAM (discuss measures)
b) Mesh:
- communication diameter
- bisection width
- minimum
- sorting and/or lower bound on sorting

i) Linear Array (one-dim mesh)
ii) Ring
iii) 2-D Mesh
 a) minimum finding
 b) lower bound on sorting?
 c) prefix computation
Figure 5-8 A linear array of size n.

Figure 5-15 A ring of size 8. All processors in a ring are connected to two neighbors.
Figure 5-16 A mesh of size 16. Each generic processor in a traditional mesh is connected to its four nearest neighbors. Notice that there are no wrap-around connections and that the processors located along the edges of the mesh have less than four neighbors.

c) Tree
 i) Communication diameter $O(\log n)$
 ii) Bisection Width $O(1)$
 iii) Show min-finding
 iv) Lower bound on sorting is $\Omega(n)$
Figure 5-18 A tree of base size 8. Notice that base processors have only a single neighbor (parent processor), the root has only two neighbors (children processors), and the remaining processors have three neighbors (one parent and two children processors).

d) Pyramid
 i) tapering array of meshes
 ii) combines advantages of mesh and tree
 iii) each PE connected to
 a) 4 mesh neighbors
 b) 4 children
 c) 1 parent
 iv) \(n \) base PEs \(\Rightarrow \frac{4}{3}n - \frac{1}{3} \) PEs
 v) apex is the bottleneck
 vi) Communication Diameter: \(\Theta(\log n) \)
 vii) Bisection Width: \(\Theta(n^{1/2}) \)
 viii) Min: \(\Theta(\log n) \)
 ix) Sorting: \(\Omega(n^{1/2}) \)
Figure 5-19 A *pyramid of base size* \(n \) can be viewed as a set of processors connected as a 4-ary tree, where at each level in the pyramid, the processors at that level are connected as a 2-dimensional mesh. Alternately, it can be thought of as a tapering array of meshes. The root of a pyramid only has links to its four children. Each base processor has links to its four base-level mesh neighbors and an additional link to a parent. In general, a generic processor somewhere in the middle of a pyramid is connected to one parent, four children, and has four mesh-connected neighbors.

e) Mesh-of-Trees
i) mesh with a tree of PEs over every row and every column
ii) MOT of base size n has
 a) n PEs in the base mesh
 b) $n^{1/2}$ column trees, each with $n^{1/2} - 1$ non-base PEs
 c) $n^{1/2}$ row trees, each with $n^{1/2} - 1$ non-base PEs
 d) $3n - 2n^{1/2}$ total PEs
 e) All PEs are identical except for neighboring connections
 (1) Base PE: 4 MESH neighbors; parent in row tree; parent in column tree
 (2) Interior tree PE: parent in tree; 2 children in tree
 (3) Tree root PE: 2 children
iii) Communication diameter: $\Theta(\log n)$
iv) Bisection Width: $\Theta(n^{1/2})$
v) Minimum: $\Theta(\log n)$
vi) Sorting: $\Omega(n^{1/2})$
vii) Bottlenecks for moving data not as bad as pyramid
Figure 5-20. A mesh-of-trees of base size n consists of a mesh of size n at the base, with a tree above each of the $n^{1/2}$ columns, and a tree above each of the $n^{1/2}$ rows. Notice that the trees are completely disjoint except at the base. The mesh-of-trees of base size n has n processors in the base mesh, $2n^{1/2} - 1$ processors in each of the $n^{1/2}$ row trees, and $2n^{1/2} - 1$ processors in each of the $n^{1/2}$ column trees.

f) Hypercube: An r-dimensional hypercube has $N = 2^r$ nodes and $r2^{r-1}$ edges. Each node corresponds to an r-bit string, where 2 nodes share an edge iff their r-bit strings differ in exactly 1 position.

iv) Each node is connected to $\log_2 N$ other nodes.

v) This is not a fixed degree network.

vi) Show how to build an r-cube recursively from two $(r-1)$-cubes.

vii) An edge is a k-dimensional edge iff it connects nodes differing in the k^{th} bit position. So, the notion of edges of dimension k is well defined.

viii) Communication diameter: $\log_2 N$

- Note: includes multiple paths between nodes

ix) Bisection Width: $N/2$
Figure 5-23 A hypercube of size 16 with the processors indexed by the integers \{0, 1, \ldots, 15\}. Pairs of processors are connected if and only if their unique \(\log_2 16 = 4\) bit strings differ in exactly one position.

Figure 5.24 Constructing a hypercube of size n from two subcubes each of size $n/2$.
First, attach elements of subcube A to elements of subcube B with the same index.
Then prepend a 0 to indices of subcube A and prepend a 1 to all indices of subcube B.
Subcube A is shaded in all diagrams for ease of presentation.

x) **Therefore:** The hypercube has low communication diameter and high bisection width. This is very desirable!

xi) The hypercube is both node and edge symmetric in that by relabeling nodes, we can map any node to any other node and preserve communication links.

xii) Discuss lower bounds on sorting based on

a) Bisection Width

b) Communication Diameter
SIMD vs. MIMD: General Discussion (Flynn’s Taxonomy, 1966)

Granularity: Fine-Grained vs. Coarse-Grained

General Performance Measures:

1. **Throughput:** The number of results produced per unit time (typically, wall-clock)
2. **Running time:** $T_{par}(n)$ represents the length of time from the beginning of the algorithm until the last processor terminates.
3. **Cost:** $C(n, p) = p(n) \times T_{par}(n, p)$ is an upper bound on the total number of elementary steps executed by this algorithm with $p(n)$ processors on input of size n.
4. **Work** is the total number of operations performed (not counting NOPs)
5. **Speedup:** $S(n, p) = \frac{T_{seq}(n)}{T_{par}(n, p)}$, is the ratio between the time taken for the most efficient sequential algorithm to perform a task compared to the time needed for the most efficient parallel algorithm to perform the same task on an input of size n with p processors.

a) **Linear Speedup:** $S_p = p$

b) **Superlinear Speedup:** $S_p > p$. Discuss:
 i) not possible since a single PE can always emulate the parallel machine
 ii) but, choose algorithm before problem instance
 iii) emulation can have problems due to cache management
 iv) parallel algorithm can get lucky

6. **Efficiency:** $E(n, p) = \frac{T_{seq}(n)}{C(n, p)} = \frac{S(n, p)}{p(n)}$, measures how well utilized the processors are. Measures the “cost-effectiveness” of the computation. Typically, the best efficiency is at most 1.
7. Discuss relationship between measures and discuss goals of algorithm development

8. Amdahl’s Law: \(S_p \leq \frac{1}{f + (1 - f)/p} \), where \(f \) is the fraction of operations that must be performed sequentially and \(p \) is the number of processors.
 a) That is, a small number of sequential operations can significantly limit the speedup on a parallel computer.
 b) E.g., if 10% of the operations must be performed sequentially, then \(S_p \leq 10 \) regardless of how many processors are used.
 c) Discuss the falacy of the argument in terms of increased problem size.

9. **Scalable:**
 a) An algorithm is scalable if the level of parallelism increases at least linearly with the problem size.
 b) An architecture is scalable if it continues to yield the same performance per processor as the number of PEs increases.
c) Scalability is important in that it allows users to solve larger problems in the same amount of time by purchasing a larger machine.
Figure 5-25a Initial distribution of data. Data values are presented inside of the circles that represent the processors. The labels of the processors are presented as binary numbers and are positioned beside the processors in the figure.

Figure 5-25 An example of computing a semigroup operation on a hypercube of size 16. For this example, we use minimum as the semigroup operation. In the first step, we send entries from all processors with a 1 in the most significant bit to their neighbors that have a 0 in the most significant bit. That is, elements from the right subcube of size 8 are sent to their neighboring nodes in the left subcube of size 8. The receiving processors compare the two values and keep the minimum. The algorithm continues within the left subcube of size 8. After $\log_2 16 = 4$ transmission-and-compares operations, the minimum value (1) is known in processor 0000.

Figure 5-25b Step 1: Transmit-and-compare along 1-dimensional edges (i.e., the processors that differ in the most significant bit).

Figure 5-25c Step 2: Transmit-and-compare along 2-dimensional edges.

Figure 5-25d Step 3: Transmit-and-compare along 3-dimensional edges.
Figure 5-25e Step 4: Transmit-and-compare along 4-dimensional edges. The result is the global minimum being stored in processor 0000.
Figure 5-26 Data movement in a semigroup operation on a hypercube. The links of the hypercube of size 16 are labeled based on the step in which they are used to move data in the semigroup operation shown in Figure 5-25.