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Abstract

In this paper we present a simple parallel sorting algorithm and illustrate its

application in general sorting, disk sorting, and hypercube sorting. The algorithm

(called the (l;m)-mergesort (LMM)) is an extension of the bitonic and odd-even

mergesorts.

Literature on parallel sorting is abundant. Many of the algorithms proposed,

though being theoretically important, may not perform satisfactorily in practice

owing to large constants in their time bounds. The algorithm to be presented in

this paper has the potential of being practical.

We present an application for the parallel disk sorting problem. The algorithm

is asymptotically optimal (assuming that N is a polynomial inM , where N is the

number of records to be sorted and M is the internal memory size). The underly-

ing constant is very small. This algorithm performs better than the disk-striped

mergesort (DSM) algorithm when the number of disks is large. Our implementa-

tion is as simple as that of DSM (requiring no fancy data structures or prefetch

techniques.)

1



As a second application, we prove that we can get a sparse enumeration sort

on the hypercube that is simpler than that of the classical algorithm of Nassimi

and Sahni [16]. We also show that Leighton's columnsort algorithm is a special

case of LMM.

1 Introduction

Sorting is one of the most widely studied problems in computing. Numerous asymp-

totically optimal sequential algorithms have been discovered. Asymptotically optimal

algorithms have been presented for various parallel models as well. The classic algorithm

of Batcher [5] was nearly optimal with processor and time bounds of n and O(log2 n),

respectively, to sort n numbers. The paper of Ajtai, Koml�os and Szemer�edi [3] gave the

�rst asymptotically optimal logarithmic time deterministic parallel algorithm for sort-

ing. Reischuk's algorithm for the PRAM [23] and the Flashsort of Reif and Valiant [22]

were asymptotically optimal randomized algorithms. Some of the follow-up algorithms

include Leighton's column sort [15] and Cole's optimal deterministic algorithm for the

PRAM [7]. These sorting results have been employed in the design of numerous other

parallel algorithms also.

Since sorting is a fundamental problem, it is imperative to have eÆcient algorithms

to solve it. Though the literature on sorting is vast, many of these algorithms have huge

constants in their run times, making them inferior in practice to asymptotically inferior

algorithms. For a survey of parallel sorting algorithms the reader is referred to [21].

This paper is motivated by a desire to seek practical algorithms. In particular, we are

interested in the development of sorting algorithms that will have small underlying con-

stants. We introduce a variant of the bitonic and odd-even mergesort algorithms called

the (l; m)-mergesort (LMM). To demonstrate its usability, we present two illustrative

applications.

The �rst application is for the parallel disk sorting problem. This problem also

has been extensively studied on several related models. The model we use is the one

suggested by Vitter and Shriver in their pioneering paper [25]. A known lower bound

for the number of I/O read steps for parallel disk sorting is1 

�

N
DB

h
log(N=B)

log(M=B)

i�
. Here N

is the number of records to be sorted and M is the internal memory size. Also, B is the

1Throughout this paper we use log to denote logarithms to the base 2 and ln to denote natural

logarithms.
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block size and D is the number of parallel disks used. There exist several asymptotically

optimal algorithms that make O
�

N
DB

h
log(N=B)

log(M=B)

i�
I/O read steps (see e.g., [17, 1, 4]).

Our implementation results in an asymptotically optimal algorithm under the as-

sumption that N is a polynomial in M . This assumption is easily met in practice. For

instance in today's SMP market, M is typically of the order of megabytes for individual

processors. Disk sizes are of the order of gigabytes. So, it is perhaps safe to assume

that N � M
3. In particular, the number of I/O read steps needed in our algorithm is

no more than N
DB

�
log(N=M)

log(minfpM;M=Bg) + 1

�2
. This complexity bound is not dependent on

the above assumptions. If N = M
c, for some constant c, and B is small (e.g., M is a

polynomial in B) then this bound is �
�

N
DB

h
log(N=B)

log(M=B)

i�
.

Our implementation is very simple and requires no fancy data structures. The inter-

nal memory requirement is only 3DB. We illustrate with examples that when D is large,

LMM performs better than DSM. We also believe that when D is large LMM has the

potential of comparing favorably to the simple randomized algorithm (SRM) proposed

by Barve, Grove, and Vitter [6].

In addition, we prove that the LMM algorithm can be used to solve the sparse

enumeration sort on the hypercube. Such an implementation is conceptually simpler

than Nassimi and Sahni's algorithm [16].

In Section 2 we give a description of the (l; m)-mergesort and prove its correctness. In

Section 3 we present details of our parallel disk sorting application. Section 4 compares

the three algorithms DSM, SRM, and LMM. Section 5 is devoted to the application of

LMM to sparse enumeration sort. In section 6 we relate LMM with the column sort

algorithm. Section 7 concludes the paper.

2 The (l;m)-merge Sort (LMM)

The odd-even mergesort [14, 12] algorithm employs the odd-even merge algorithm re-

peatedly to merge two sequences at a time. The odd-even mergesort [14, 12], the bitonic

sort [5], and the periodic balanced mergesort [10] are all very similar. We use the term

odd-even mergesort to refer to these algorithms. These algorithms have a common theme

(up to some slight variations).

Let k1; k2; : : : ; kn be a given sequence of n keys. Assume that n = 2h for some integer

h. The odd-even mergesort begins by forming n
2
sorted sequences of length two each.
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Next, it merges two sequences at a time so that at the end n
4
sorted sequences of length

4 each will remain. This process of merging is continued until only two sequences of

length n
2
each are left. Finally these two sequences are merged.

Algorithm Odd-Even Merge

Step 1. Let U = u1; u2; : : : ; uq and V = v1; v2; : : : ; vq be the two sorted

sequences to be merged. Unshu�e U into two, i.e., partition U into two:

Uodd = u1; u3; : : : ; uq�1 and Ueven = u2; u4; : : : ; uq. Similarly partition V into

Vodd and Veven.

Step 2. Now recursively merge Uodd with Vodd. Let X = x1; x2; : : : ; xq be

the result. Also merge Ueven with Veven. Let Y = y1; y2; : : : ; yq be the result.

Step 3. Shu�eX and Y , i.e., form the sequence: Z = x1; y1; x2; y2; : : : ; xq; yq.

Step 4. Perform one step of compare-exchange operation, i.e., sort successive

subsequences of length two in Z. In other words, sort y1; x2; sort y2; x3; and

so on. The resultant sequence is the merge of U and V .

One can use the zero-one principle to prove the correctness of the above merge algo-

rithm (see e.g., [11, 14]). An extension of this idea has been employed by Thompson and

Kung [24] to design an asymptotically optimal algorithm for sorting on the mesh model

of parallel computing. Their algorithm, called the s2-way merge, partitions the given

n-element sequence to be sorted into s2 evenly sized parts (for some appropriate function

s of n), recursively sorts each part, and merges the s2 sorted parts. In order to merge s2

sorted sequences, the sequences are unshu�ed into two components, namely the odd and

even components. Each component is merged recursively, the results are shu�ed, and

some local sorting is done. E�ectively, the problem of merging s2 sequences is reduced

to two subproblems, where each subproblem is that of merging s2 subsequences. The

subsequences now will be of length one-half of the length of the original sequences. The

base case is that of merging s2 sequences of length one each. This case is handled by a

di�erent algorithm.

LMM is a generalization of the odd-even mergesort and s2-way mergesort. Here also

the sequence to be sorted is partitioned into l parts (for some appropriate l). Each part

is recursively sorted. To merge these l sequences, the sequences are unshu�ed into m

components (instead of two). More details follow.
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Algorithm LMM

Step 1. Let K = k1; k2; : : : ; kn be the sequence to be sorted. Partition K

into l evenly sized parts. Let these parts be Ki = k(i�1)n=l+1; k(i�1)n=l+2; : : :,

kin=l, for i = 1; 2; : : : ; l2. Sort each part recursively. Let the sorted sequences

be U1; U2; : : : ; Ul.

Step 2. Merge U1; U2; : : : ; Ul using Algorithm (l; m)-merge.

Now we describe the underlying merge algorithm. Figure 1 illustrates the steps

involved in this algorithm.

Algorithm (l; m)-merge

Step 1. Let the sequences to be merged be Ui = u
1
i ; u

2
i ; : : : ; u

r
i , for 1 �

i � l. If r is small use a base case algorithm (e.g., any sorting algorithm).

Otherwise, unshu�e each Ui into m parts. In particular, partition Ui into

U
1
i ; U

2
i ; : : : ; U

m
i , where U

1
i = u

1
i ; u

1+m
i ; : : :; U2

i = u
2
i ; u

2+m
i ; : : :; and so on.

Step 2.

Recursively merge U
j
1 ; U

j
2 ; : : : ; U

j
l , for 1 � j � m. Let the merged sequences

be Xj = x
1
j ; x

2
j ; : : : ; x

lr=m
j , for 1 � j � m.

Step 3. Shu�e X1; X2; : : : ; Xm, i.e., form the sequence Z = x
1
1; x

1
2; : : : ; x

1
m,

x
2
1; x

2
2; : : : ; x

2
m; : : : ; x

lr=m
1 ; x

lr=m
2 ; : : : ; x

lr=m
m .

Step 4. It can be shown that at this point the length of the `dirty sequence'

(i.e., unsorted portion) is no more than lm. But we don't know where the

dirty sequence is located. We can cleanup the dirty sequence in many di�er-

ent ways. One way is described below.

Call the sequence of the �rst lm elements of Z as Z1; the next lm elements

as Z2; and so on. In other words, Z is partitioned into Z1; Z2; : : : ; Zr=m. Sort

each one of the Zi's. Followed by this merge Z1 and Z2; merge Z3 and Z4;

etc. Finally merge Z2 and Z3; merge Z4 and Z5; and so on.

2Assume without loss of generality that n=l is an integer
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U U U1 2 l

Unshuffle
into m parts

Recursively
merge

X X X1 2 m

Shuffle

Z1 Z2 Z3 Z4

Sort  each  Z  ;i

lm

... ... ...

... ... ...

...

...

1

2

2

3 4

3 4Merge  Z  with  Z  ;  merge  Z  with  Z  ; etc.
5Merge  Z  with  Z  ;  merge  Z  with  Z  ; etc.

Figure 1: Algorithm (l; m)-merge
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Proof of correctness. Note that it suÆces to prove the correctness of the merge algo-

rithm since the sorting algorithm functions by repeatedly invoking the merge algorithm.

We prove the correctness of Algorithm (l; m)-merge using the zero-one principle. Since

the algorithm is oblivious, the zero-one principle holds. Assume that the sequence to be

sorted consists of only zeros and ones.

Let the number of zeros in Ui be zi, for 1 � i � l. The minimum number of zeros

contributed by any Ui to any Xj (1 � i � l; 1 � j � m) is b zi
m
c. The maximum

number of zeros contributed by any Ui to any Xj is d zime. Thus the minimum number

of zeros in any Xj is zmin =
Pl

i=1b zimc. The maximum number of zeros in any Xj is

zmax =
Pl

i=1d zime.
The di�erence between zmax and zmin can be at most l. This in turn means that

when the Xj's are shu�ed, the length of the dirty sequence (i.e., the unsorted portion)

can be at most lm. The fact that Step 4 cleans up the dirty sequence is also easy to see.

Intuitively, at the end of Step 3, the sequence is almost in sorted order. In particular,

every element is at a distance of at most lm from its �nal position in sorted order. That's

why the local sorting done in Step 4 helps in obtaining sorted order. This completes the

proof of correctness. 2

Observation. The odd-even mergesort is nothing but LMM with l = m = 2. Thompson

and Kung's s2-way merge sort is a special case of LMM with l = s
2 and m = 2 [24].

3 Parallel Disk Sorting

The problem of external sorting has been widely explored owing to its paramount im-

portance. Memory is expensive and in some cases limited due to architectural consider-

ations. With the widening gap between processor speeds and disk access speeds, the I/O

bottleneck has become critical. Parallel disk systems have been introduced to alleviate

this bottleneck.

Several models for parallel disks have been investigated. The model employed in

this paper is the one introduced by Vitter and Shriver [25]. In this model there are D

distinct and independent disk drives. In one parallel I/O operation, each disk transmits

one block of data. A block consists of B records. If M is the internal memory size,

then one usually requires that M � 2DB to overlap I/O with local computations. For

the algorithms presented in this paper, a choice of M = 3DB suÆces. Of this, only
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2DB amount of memory is used to store data to be currently operated on. In the other

portion, we store prefetched data in order to overlap computation and data access. From

hereon, M is used to refer to only DB.

The problem of disk sorting was �rst studied by Aggarwal and Vitter in [2]. In the

model they considered, each I/O operation results in the transfer of D blocks each block

having B records. A more realistic model was envisioned in [25]. Several asymptotically

optimal algorithms have been given for sorting on this model. Nodine and Vitter's

optimal deterministic sorting algorithm [18] involves solving certain matching problems.

Aggarwal and Plaxton's optimal algorithm [1] is based on the Sharesort algorithm of

Cypher and Plaxton [9]. Vitter and Shriver gave an optimal randomized algorithm for

disk sorting [25]. All these results are highly nontrivial and theoretically interesting.

However, the underlying constants in their time bounds are high as can be seen from an

analysis of their algorithms. An implementation of the radix sort on parallel disks has

been given in [8].

The disk-striped mergesort (DSM) [6] has the advantages of simplicity and a small

constant. Data accesses made by DSM is such that at any I/O operation, the same

portions of the D disks are accessed. This has the e�ect of having a single disk which

can transfer DB records in a single I/O operation. An M
DB

-way mergesort is employed

by this algorithm. To start with, initial runs are formed in one pass through the data.

At the end the disk has N=M runs each of length M . Next, M
DB

runs are merged at a

time. Blocks of any run are uniformly striped across the disks so that in future they can

be accessed in parallel utilizing the full bandwidth. Each phase of merging involves one

pass through the data. There are
log(N=M)

log(M=DB)
phases and hence the total number of passes

made by DSM is
log(N=M)

log(M=DB)
. In other words, the total number of I/O read operations

performed by the algorithm is N
DB

�
1 +

log(N=M)

log(M=DB)

�
. The constant here is just 1.

The known lower bound on the number of passes for parallel disk sorting is 

�
log(N=B)

log(M=B)

�
.

If one assumes that N is a polynomial in M and that B is small (which are readily sat-

is�ed in practice), the lower bound simply yields 
(1) passes. All the abovementioned

optimal algorithms make only O(1) passes. So, the challenge in the design of parallel

disk sorting algorithms is in reducing this constant. If M = 2DB, the number of passes

made by DSM is 1 + log(N=M), which indeed can be very high.

Recently, several works have been done that deal with the practical aspects. Pai,

Scha�er, and Varman [19] analyzed the average case performance of a simple merging

algorithm, employing an approximate model of average case inputs. Barve, Grove,
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and Vitter [6] have presented a simple randomized algorithm (SRM) and analyzed its

performance. The analysis involves the solution of certain occupancy problems. The

expected number RSRM of I/O read operations made by their algorithm is such that

RSRM �
N

DB

h
1 +

ln(N=M)

ln kD

lnD

k ln lnD

�
1 +

ln ln lnD

ln lnD
+

1 + ln k

ln lnD
+O(1)

�i
(1)

The SRM algorithm merges R = kD runs at a time, for some integer k. When

R = 
(D logD), the expected performance of their algorithm is optimal. However, in

this case, the internal memory needed is 
(BD logD). They have also compared SRM

with DSM through simulations and shown that SRM performs better than DSM.

The algorithm presented in this paper is asymptotically optimal under the assump-

tions that N is a polynomial in M and B is small. The algorithm is an application of

the (l; m)-mergesort. The algorithm is as simple as DSM. We do not need any fancy

data structures or prefetching techniques. The standard overlapping of computations

and I/O operations can be done. The internal memory requirement is only 3DB. We

demonstrate with examples that our algorithm makes fewer passes than DSM when D

is large.

Our algorithm merges R runs at a time, for some appropriate R. Since our algorithm

is also based on merging in phases, we have to specify how the runs in a phase are stored

across the D disks. Let the disks as well as the runs be numbered from zero. Each run

will be striped across the disks. If R � D, the starting disk for the ith run is i mod D,

i.e., the zeroth block of the ith run will be in disk i mod D; its �rst block will be in disk

(i+ 1) mod D; and so on. This will enable us to access, in one I/O read operation, one

block each from D distinct runs and hence obtain perfect disk parallelism. See Figure

2. If R < D, the starting disk for the ith run is iD
R
. (Assume without loss of generality

that D divides R.) Even now, we can obtain D
R
blocks from each of the runs in one I/O

operation and hence achieve perfect disk parallelism.

In practice the value of B will be much less than M . For example, if M
B

>
p
M ,

then the number of read passes made by our algorithm is no more than
�
2
log(N=M)

logM
+ 1

�2
.

But for the sake of completeness, we also consider the case M
B
�
p
M . In either case,

we show that the number of read passes made by our algorithm is upper bounded by�
log(N=M)

log(minfpM;M=Bg) + 1

�2
. Like all the algorithms in the literature, our algorithm also

forms initial runs of length M each in one read pass through the data. After this, the

runs will be merged R at a time. Throughout, we use T (u; v) to denote the number of

9



Disk 1 Disk 2 Disk 3 Disk D

Run 1

Run 2

...

...

...

...

...

Run 3

Figure 2: Striping of runs
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read passes needed to merge u sequences of length v each.

3.1 Some Special Cases

We begin by looking at some special cases. Consider the problem of merging
p
M runs

each of length M , when M
B
�
p
M . Here R =

p
M . This merging can be done using

Algorithm (l; m)-merge with l = m =
p
M .

Let U1; U2; : : : ; U
p
M be the sequences to be merged. In Step 1, each Ui gets unshu�ed

into
p
M parts so that each part is of length

p
M . This unshu�ing can be done in one

pass. In Step 2, we have
p
M merges to do, where each merge involves

p
M sequences

of length
p
M each. Observe that there are only M records in each merge and hence all

the mergings can be done in one pass through the data. Step 3 involves shu�ing and

Step 4 involves cleaning up. The length of the dirty sequence is (
p
M)2 = M . These

two steps can be combined and �nished in one pass through the data. The idea is to

have two successive Zi's (c.f. Algorithm (l; m)-merge) (call these Zi and Zi+1) at any

time in the main memory. We can sort Zi and Zi+1 and merge them. After this Zi is

ready to be shipped to the disks. Zi+2 will then be brought in, sorted, and merged with

Zi+1. At this point Zi+1 will be shipped out; and so on.

Note that throughout we can maintain perfect disk parallelism. Thus we get:

Lemma 3.1 T (
p
M;M) = 3, if M

B
�
p
M .

Now consider the case of merging M
B

runs each of length M , when M
B
<
p
M . To

solve this problem, employ Algorithm (l; m)-merge with l = m = M
B
. Note that we

have assumed M = DB.

Let the sequences to be merged be U1; U2; : : : ; UM=B. Step 1 can be done in one

pass. Each Ui gets partitioned into M=B parts each of length B. Thus there are M=B

merging problems, where each problem has to merge M=B sequences each of length B.

Since the total number of records in any problem is M , these merging problems can be

solved in one pass. Finally, Steps 3 and 4 can also be done in one pass since the length

of the dirty sequence is �M
2
=B

2
< M . As a result we have

Lemma 3.2 T

�
M
B
;M

�
= 3, if M

B
<
p
M .
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3.2 The General Algorithm

Now we are ready to present the general version of the parallel disk sorting algorithm.

Here also we will present the algorithm in two cases, one for M
B
�
p
M and the other for

M
B
<
p
M . In either case, initial runs are formed in one pass at the end of which N=M

sorted sequences of length M each remain to be merged.

If M
B
�
p
M , we employ Algorithm (l; m)-merge with l = m =

p
M and R =

p
M .

Let K denote
p
M and let N

M
= K

2c. In other words, c =
log(N=M)

logM
. It is easy to see that

T (K2c
;M) = T (K;M) + T (K;KM) + � � � + T (K;K2c�1

M) (2)

The above relation basically means that we start with K
2c sequences of length M

each; we merge K at a time to end up with K2c�1 sequences of length KM each; again

merge K at a time to end up with K
2c�2 sequences of length K

2
M each; and so on.

Finally we'll have K sequences of length K2c�1
M each which are merged. Each of these

mergings are done using the Algorithm (l; m)-merge with l = m =
p
M .

Let us compute T (K;Ki
M) for any i. We have K sequences of length K

i
M each.

Let these sequences be U1; U2; : : : ; UK. In Step 1, each Uj is unshu�ed into K parts each

of size Ki�1
M . This takes one pass. Now there are K merging problems, where each

merging problem involves K sequences of length K
i�1

M each. The number of passes

needed is T (K;Ki�1
M). In Steps 3 and 4, the length of the dirty sequence is � K

2 =M .

Clearly, this takes only one pass. Therefore,

T (K;Ki
M) = T (K;Ki�1

M) + 2:

Expanding this out we see,

T (K;Ki
M) = 2i+ T (K;M) = 2i+ 3:

We have made use of the fact that T (K;M) = 3 (c.f. Lemma 3.1).

Note that there areK2c�i�1 subproblems of the above kind (i.e., mergingK sequences

of length Ki
M each). Each such subproblem can be solved using 2i+ 3 passes over the

data in the subproblem (i.e., Ki+1
M records). Thus all of these K2c�i�1 subproblems

can be solved with 2i+ 3 passes over the entire input (of N records).

Substituting this into Equation 2, we get

T (K2c
;M) =

2c�1X
i=0

(2i+ 3) = 4c2 + 4c

12



where c =
log(N=M)

logM
. If N �M

3, the above merging cost is � 24 passes.

We have the following

Theorem 3.1 The number of read passes needed to sort N records is 1+4
�
log(N=M)

logM

�2
+

4
log(N=M)

logM
, if

M
B
�
p
M . This number of passes is no more than

�
log(N=M)

log(minfpM;M=Bg) + 1

�2
.

Now consider the case M
B
<
p
M . Algorithm (l; m)-merge will be used with l =

m = M
B
and R = M

B
. Let Q denote M

B
and let N

M
= Q

d. That is, d =
log(N=M)

log(M=B)
. As before

we have

T (Qd

;M) = T (Q;M) + T (Q;QM) + � � � + T (Q;Qd�1
M) (3)

In order to compute T (Q;Qi
M) for any i, note that we have Q sequences of length

Q
i
M each. Let U1; U2; : : : ; UQ be these sequences. In Step 1, each Uj is unshu�ed into

Q parts each of size Qi�1
M . This takes one pass. Now there are Q merging problems.

Each merging problem has Q sequences of length Q
i�1

M each. The number of passes

needed to perform all these mergings is T (Q;Qi�1
M). Steps 3 and 4 can be performed

in one pass since the length of the dirty sequence is � Q
2
< M . Therefore,

T (Q;Qi
M) = T (Q;Qi�1

M) + 2:

Expansion of this gives

T (Q;Qi
M) = 2i+ T (Q;M) = 2i + 3:

We have made the substitution T (Q;M) = 3 (c.f. Lemma 3.2).

Equation 3 now becomes

T (Qd
;M) =

d�1X
i=0

(2i+ 3) = d
2 + 2d

where d =
log(N=M)

log(M=B)
.

Theorem 3.2 The number of read passes needed to sort N records is upper bounded by�
log(N=M)

log(minf
p
M;M=Bg) + 1

�2
, if

M
B
<
p
M .

Theorems 3.1 and 3.2 readily yield
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Theorem 3.3 We can sort N records in �
�

log(N=M)

log(minf
p
M;M=Bg) + 1

�2
read passes over the

data, maintaining perfect disk parallelism. In other words, the total number of I/O read

operations needed is � N
DB

�
log(N=M)

log(minf
p
M;M=Bg) + 1

�2
.

Observation. In Algorithm (l; m)-merge, both l and m have to be � M
B

in order to

achieve perfect disk parallelism.

4 A Comparison of DSM, SRM, and LMM

DSM is not asymptotically optimal. For example, if M = 2DB, DSM makes 1 +

log(N=M) = 
(logN) passes over the data. If R = kD for some constant k, then SRM

is also not asymptotically optimal. Also, under the assumption M = O(DB) (which is

the case for LMM), SRM is not asymptotically optimal. However, if R = kD logD, then

the expected performance of SRM is optimal. This will mean that the size of M has to

be 
(BD logD). On the other hand, LMM is asymptotically optimal assuming that N

is a polynomial in M and B is not very large.

Both DSM and LMM are deterministic and need only a reasonable amount of internal

memory. Both are very simple and easy to implement. No additional data structures or

prefetching techniques are used. Performance analyses are quite simple. On the other

hand, SRM is randomized and the performance analysis is more diÆcult. Its internal

memory requirement is 2RB + 4DB + RD. SRM stores additional (though small)

information in each block and maintains a forecasting data structure. The analysis of

SRM involves the solution of certain occupancy problems.

Now we show that LMM can indeed perform better than DSM when D is large with

two examples. A fair comparison of LMM with SRM will require simulations. Since for

R = D, the number of passes made by SRM is not optimal, we speculate that LMM

might compare favorably to SRM when D is large.

In the following examples we won't invoke Theorem 3.3 but rather specialize LMM

to get the best possible performance. These examples illustrate that we can get better

results than promised by Theorem 3.3. In this context LMM should be thought of as a

framework for designing parallel disk sorting algorithms.

Example 4.1 The �rst example considered is one with N = 239;M = 226;B = 210.

Here M=B = 216. We need to merge 213 sequences of length 226 each. We apply
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a (213; 213)-merge on the sequences. There will be 213 merging problems where each

problem involves 213 sequences each of length 213. Thus the mergings in Step 2 need

only one pass. Step 1 takes one pass. Steps 3 and 4 together need one pass. So LMM

takes a total of three passes. The number of read passes made by the algorithms for

various disk sizes are shown in Table 1. 2

N D DSM LMM

239 215 13 3

239 212 4 3

239 29 2 3

Table 1. An Example

Example 4.2 The next example we consider has N = 242;M = 226;B = 210. We have

to merge 216 sequences each of length 226. T (216; 226) = T (213; 226) + T (23; 239). Both

T (213; 226) and T (23; 239) can easily be seen to be 3 each using (213; 213) and (23; 216)-

merges, respectively.

Table 2 displays the comparison of DSM and LMM for this example. 2

N D DSM LMM

242 215 16 6

242 212 4 6

242 29 3 6

Table 2. Another Example

5 Sparse Enumeration Sort

In this section we present a somewhat simpler algorithm than that of the classical al-

gorithm of Nassimi and Sahni [16] for sparse enumeration sort. The problem is to sort

n elements on an n
1+1=k-processor hypercubic network, for any k > 0. The algorithm

of [16] has a time bound of O(k logn). Our algorithm also has the same asymptotic

performance.
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5.1 Some De�nitions

A hypercube of dimension d, denoted Hd has 2
d processors. Each processor can be la-

beled with a d-bit binary number. A processor labeled u is connected to those processors

with label v such that u and v di�er in exactly one bit.

If we �x some i bits and vary the remaining bits of a d-bit binary number, the

corresponding processors form a subcube Hd�i in Hd.

5.2 The Algorithm

The main result of this section needs the following

Theorem 5.1 2m keys can be sorted on a hypercube of size n = 22m in O(logn) time.

Proof. H2m can be thought of as consisting of 2m copies of Hm. Input is given in one

of these Hm's. Broadcast the input so that each Hm has a copy of the input. This

takes O(logn) time. Each Hm computes the rank of one input key using the pre�x

sums algorithm. Pre�x computation takes O(logn) time. Finally route the keys to their

sorted positions. This can be done in O(logn) time as well. 2

Theorem 5.2 We can sort n keys in O(k logn) time on a hypercube of size n
1+1=k

.

Proof. Let S(n) be the time needed to sort n keys. Let T (u; v) be the time needed to

merge u lists of length v each. Also let � = 1
2k
.

To begin with group the elements with n1�� elements in each group. Sort each group

recursively in time S(n1��). Followed by this sort, merge the resultant n� sorted lists,

each of length n
1��, employing Algorithm (l; m)-merge with l = m = n

�. Let Q = n
�.

Thus it follows that

S(n) = S

�
n

Q

�
+ T

�
Q;

n

Q

�
= S(Q2k�1) + T (Q;Q2k�1) (4)

In order to compute T (Q;Qj), for any j, consider Step 1 of Algorithm (l; m)-merge.

After unshu�ing, each Ui will be partitioned into Q parts with Qj�1 elements each. Step

2 will thus take time T (Q;Qj�1). Unshu�ing in Step 1 and shu�ing in Step 3 take time

O(logQ). In Step 4 the length of the dirty sequence is � Q
2 and hence Step 4 can be

completed in O(logQ) time as well (employing Theorem 5.1).
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As a result, we have T (Q;Qj) = T (Q;Qj�1) +O(logQ). Expanding this out, we get

T (Q;Qj) = O(j logQ). Substituting this back in Equation 4, we see that

S(n) = S(Q) +
2k�1X
j=1

O(j logQ)

= O(logQ) +O(k2 logQ) = O(k logn) 2

6 Columnsort As A Special Case

Columnsort has been employed on various parallel models of computing [14, 15]. This

algorithm can be described as follows. Let k1; k2; : : : ; kn be the n given numbers. These

numbers are thought of as forming a (tall and thin) matrix M with r rows and s

columns.(with r � s
2). There are 7 steps in the algorithm: 1) Sort the columns in

increasing order; 2) Transpose the matrix preserving the dimension as r � s. I.e., pick

the elements in column major order and �ll the rows in row major order; 3) Sort the

columns in increasing order; 4) Rearrange the numbers applying the reverse of the per-

mutation employed in step 2; 5) Sort the columns in a way that adjacent columns are

sorted in reverse order; 6) Apply two steps of odd-even transposition sort to the rows;

and 7) Sort each column in increasing order. At the end of step 7, it can be shown that,

the numbers will be sorted in column major order.

Columnsort is thus easily seen to be a special case of LMM where l = m = s (with

n � s
3). In Step 1 of columnsort, the input is grouped into s parts and each part

is sorted (c.f. Step 1 of Algorithm LMM). In Step 2, the sorted subsequences are

s-way unshu�ed (c.f. Step 1 of Algorithm (l; m)-merge). In Step 3, the unshu�ed

subsequences are sorted instead of being recursively merged (c.f. Step 2 of Algorithm

(l; m)-merge). In Step 4 shu�ing is performed (c.f. Step 3 of Algorithm (l; m)-merge).

Steps 5, 6, and 7 of columnsort perform Step 4 of Algorithm (l; m)-merge.

Note that the crucial di�erences between LMM and the columnsort are: 1) LMM

is recursive and the columnsort is not; and 2) The columnsort has l = m but LMM is

general. In fact in Example 4.2, we have l 6= m.

It is also noteworthy that Kunde's algorithm for the mesh [13] somewhat resembles

the columnsort algorithm.
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7 Conclusions

We have introduced a new sorting algorithm called the (l; m)-mergesort. An application

of this algorithm to the parallel disk sorting problem yields an asymptotically optimal

algorithm that performs better than DSM and possibly SRM algorithms when the num-

ber of disks is large. This algorithm is as simple as DSM requiring no nontrivial data

structures or prefetching techniques. We strongly believe that our algorithm will perform

well in practice as evidenced in the recent work of Pearson [20]. We also believe that

applications of our sorting scheme to other models will result in similar performances.

We have shown that the columnsort of Leighton is a special case of (l; m)-mergesort and

applied LMM to the hypercube.
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