1. As discussed in class, if \(f_i(y) \) is the optimal profit for \(\text{KNAP}(1, j, y) \), the recurrence relation for \(f_i(y) \) is given by:
 \[
 f_i(y) = \max\{f_{i-1}(y), f_{i-1}(y - w_i) + p_i\}.
 \]
 Also, \(f_0(y) = 0 \) for all non-negative values of \(y \) and \(f_i(y) = -\infty \) when \(y \) is negative. From these relations we compute \(f_0(y), f_1(y), f_2(y), f_3(y), f_4(y) \) for all \(0 \leq y \leq 5 \). These values are shown in the following table.

<table>
<thead>
<tr>
<th>Function</th>
<th>(y = 0)</th>
<th>(y = 1)</th>
<th>(y = 2)</th>
<th>(y = 3)</th>
<th>(y = 4)</th>
<th>(y = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f_1)</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>(f_3)</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>(f_4)</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

For example, \(f_3(5) = \max\{f_2(5), f_2(5 - 3) + 25\} = \max\{25, 15 + 25\} = 40 \). Also, \(f_4(4) = \max\{f_3(4), f_3(4 - 2) + 12\} = \max\{35, 15 + 12\} = 35 \); and so on. Thus the optimal profit is 40.

2. Let \(A \) be the adjacency matrix of the graph (whose diagonal elements are zeros). It can be shown that \(A^k(i, j) = 1 \) iff there is a path from node \(i \) to node \(j \) of length exactly equal to \(k \), for any \(0 \leq k \leq (n - 1) \). If there is a path at all from node \(i \) to node \(j \) in \(G \), the shortest such path will be of length \(\leq (n - 1) \).

Hence, \(A^n = I + A + A^2 + \ldots + A^{n-1} = (I + A)^{n-1} \). Here, scalar addition corresponds to boolean or and scalar multiplication corresponds to boolean and.

Now, \((I + A)^{n-1} \) can be computed by repeated squaring, i.e., \((I + A)^2, (I + A)^4, (I + A)^8 \) etc.

Complexity = Complexity of adding matrices \(I \) and \(A \) + Complexity of computing \((I + A)^{n-1} = O(M(n) \log n) \).

3. Start from the first header node in the adjacency list of \(G \) and start counting the edges until you reach the count \(2(|V| - 1) \). If the graph has any more edges than these then it is not a tree. If the graph has exactly \(2(|V| - 1) \) edges, do the following: Perform a DFS in \(G \) and identify the connected components of \(G \). If \(G \) contains only one connected component,
then it is a tree else it is not a tree. Time Complexity = Initial edge counting time + Time complexity of DFS in G. DFS takes time $O(|V| + |E|) = O(|V|)$. Initial edge counting also takes $O(|V|)$ time.

4. It was shown in class that the maximum of n elements can be found in $O(1)$ time using n^2 common CRCW PRAM processors.

Consider the case when $\epsilon = \frac{1}{2}$. Divide the elements into groups of size \sqrt{n}. Assign the first \sqrt{n} elements to the first n processors and the second \sqrt{n} elements to the next n processors and so on. The maximum element in each group can be found in $O(1)$ time. At this stage, we have \sqrt{n} elements and $n\sqrt{n}$ processors. Hence, the maximum of these elements can be found in $O(1)$ time. Total time = $O(1)$.

Next, consider the case when $\epsilon = \frac{1}{3}$. Here, divide the elements into groups of size $n^{1/3}$. Assign the first $n^{1/3}$ elements to the first $n^{2/3}$ processors and the second $n^{1/3}$ elements to the next $n^{2/3}$ processors and so on. The maximum element of each group can be found in $O(1)$ time and using $n^{4/3}$ processors the maximum of these maximum elements can be found in $O(1)$ time.

For the general case, partition the input into groups with n^ϵ elements in each group. Find the maximum of each group assigning $n^{2\epsilon}$ processors to each group. This takes $O(1)$ time. Now the problem reduces to finding the maximum of $n^{1-\epsilon}$ elements. Again, partition the elements with n^ϵ elements in each group and find the maximum of each group. There will be only $n^{1-2\epsilon}$ elements left. Proceed in a similar fashion until the number of remaining elements is $\leq \sqrt{n}$. The maximum of these can be found in $O(1)$ time. Clearly, the run time of this algorithm is $O(1/\epsilon)$. This will be a constant if ϵ is a constant.

5. Let k_1, k_2, \ldots, k_n be the elements. Divide the elements into groups of size $\log n$. Assign the first $\log n$ elements to the first processor and the second $\log n$ elements to the second processor and so on.

Create a temporary array, A, of size n.

Step 1: At each processor do: compare all the elements assigned to that processor with x sequentially. If an element k_i is less than or equal to x, place 1 in the array A at index i else place a 0 at A_i. Time = $O(\log n)$.

Step 2: Compute the prefix sums of the elements of the array A using all the $\frac{n}{\log n}$ processors. Complexity = $O(\log n)$.

2
Let us assume that the rearranged elements will be placed in an array \(B \).

Step 3: Move the elements that are less than or equal to \(x \) into \(B \) first.

For each element \(k_i \) with a 1 in \(A_i \), the value of the corresponding prefix sum gives the index in \(B \) where that element can be placed.

At each processor do: let \(p \) be the prefix sum of an element \(k_i \) with a 1 in \(A_i \). Move \(k_i \) into \(B[p] \). Time = \(O(\log n) \) (there are only \(\log n \) elements at each processor).

Step 3: Find the maximum prefix (\(\text{maxPrefix} \)) of any element with a 1 in \(A_i \) in step 2.

Step 4: Now, the elements that are greater than \(x \) can be copied into \(B \) starting from \(B[\text{maxPrefix} + 1] \).

Flip all the elements of \(A \) and repeat the procedure in steps 2 and 3 with the following difference: if \(p \) is the prefix sum of an element \(k_i \), move \(k_i \) into \(B[p + \text{maxPrefix}] \). Complexity = \(O(\log n) \).

Total complexity = \(O(\log n) \).

6. We know that \(\pi_1 \) polynomially reduces to \(\pi_2 \). Let \(x \) be an instance of \(\pi_1 \) with \(|x| = n \). We can convert this into an instance \(x' \) of \(\pi_2 \) in \(O(n^c) \) time (for some constant \(c \)). Note that \(c \) could be any constant (10, for instance) and we can only say that \(|x'| = O(n^c) \) and in fact \(|x'| \) could be \(\Omega(n^c) \). If \(|x'| \) is \(\Omega(n^c) \), the run time needed for solving \(x' \) will be \(O(2^{\sqrt{\Omega(n^c)}}) \) which can be asymptotically greater than \(2^{\sqrt{n}} \). Thus the given statement is not correct.

7. Use the following algorithm, \textbf{Size}(\textit{Graph} \ G) -

\begin{verbatim}
for \(i := |V| \) to 0 do
 if \(\text{CLQ}(i) = \text{yes} \) then
 output \(i \)
 quit
 end
end
\end{verbatim}

Note that we increase the runtime of the \textbf{CLQ} algorithm, by a factor of \(|V| \), yet maintaining it polynomial.