CSE 245: Computer Networks and Data Communication

Course Information

Time and location: TuTh 05:00pm – 06:15pm, ITEB 119

Instructor: Jun-Hong Cui (jcui@cse.uconn.edu)
Office: ITEB 267
Phone: (860) 486-8951

Instructor office hours: TuTh 02:00pm – 03:00pm or by appointment

Teaching assistant: Yan Li (yal04001@engr.uconn.edu)

Teaching assistant office hours: MW 01:00pm – 02:00pm (Office: ITEB 230)

Class online: Check WebCT (http://webct.uconn.edu)

Objectives

The past few years have seen a remarkable growth in the global network infrastructure. The Internet has grown from a research curiosity to something as essential as the ubiquitous telephone and utility networks. It has been able to withstand rapid growth fairly well and its core protocols have been robust enough to accommodate applications that were unforeseen by the original Internet designers, such as the World Wide Web. Furthermore, networking is becoming an essential component of many systems.

In this class, we will study the fundamental principles in the design and implementation of computer communication networks, their protocols, and applications. Topics to be covered include: layered network architectures, network applications, network programming interfaces (e.g., sockets), transport services, data link protocols, local area networks and network routing. Examples will be drawn primarily from the Internet TCP/IP protocol suite. Through homework assignments and class projects, the students will learn how the Internet works and how to design Internet applications.

Upon successful completion of the course, you will have a good understanding of the layered network architecture, the fundamental design issues in each layer, and the solution approaches towards addressing these issues. You will also get well prepared for investigating advanced topics in the networking field.
Course Prerequisites

- A rudimentary understanding of algorithms, probability, computer architecture, and operating systems would be helpful.
- Programming experience in C is required.
- System experience in Unix/Linux is preferred.

Textbook


List of Topics

- Chapter 1: Computer Networks and the Internet
- Chapter 2: Application Layer
- Chapter 3: Transport Layer
- Chapter 4: Network Layer and Routing
- Chapter 5: Link Layer and Local Area Networks
- Chapter 6 & 7: Multimedia Networking and Security (if time permits)

References


Grading

There will be 4 homeworks, 2 programming projects, one in-class midterm exam (in the Mid of Oct.), and one final exam. The exams will be closed-book and closed-notes.

The final course grade will be computed as follows:

- Homework: 12% (3% each)
- Projects: 33% (proj1: 17%, proj2: 16%)
- Mid-term exam: 25%
- Final exam: 30%

If you have questions regarding the grading of your homeworks, projects or exams, you MUST come to see either the instructor or the TA WITHIN ONE WEEK after the date your homeworks, projects or exams have been returned to you.
Computer Accounts

You are expected to use the Unix/Linux machines in ECS (Engineering Computing Services) for the programming projects. If you do your projects in other system environments, it is your responsibility to make sure your programs can run on the ECS Unix/Linux machines. (NOTE: TA will grade the projects on the ECS Unix/Linux machines.) If you do not have an ECS UNIX/LINUX account, you need to apply for one at http://www.engr.uconn.edu/ecs/newpeople.htm.

Late Policy

Homeworks and projects must be turned in before the specified due date and time. Late homeworks and projects will NOT be accepted.

Academic Integrity

YOU MUST DO YOUR HOMEWORKS AND PROJECTS ON YOUR OWN UNLESS THEY ARE SPECIFIED AS GROUP WORK!

You may discuss the homework with anyone and use any reference material, provided you do not copy any other person’s work or solution books. Appropriate reference or credit must be acknowledged if you do not solve the homework problems on your own.

For the programming projects, it is expected that you have written EVERY LINE OF CODE that you submit (with the exception of code given out in class). The following are examples of activities that are PROHIBITED:

- Writing code with another student.
- Copying code from another student.
- Giving code to another student (via email, printouts, etc).
- Posting code in a publicly accessible location.

Such activities will result in zero points awarded for the project.

The first project will be done in a small group. Two or three people can form a group. For the group project, it is expected that your group have written EVERY LINE OF CODE that you submit (with the exception of code given out in class). The following are examples of activities that are PROHIBITED:

- Writing code with another group.
- Copying code from another group.
- Giving code to another group (via email, printouts, etc).
- Posting code in a publicly accessible location.

Such activities will result in zero points awarded for the project.

We will follow the University Policy on Academic Integrity regarding any cheating and plagiarism. Take the time to familiarize yourself with the contents of this page, as you are responsible for its contents.