Operating Policy

Lecture: room/Chem A203, TuTh 2:00-3:30

Lecturer: Robert McCartney
mail: robert@cse.uconn.edu
office: UTEB 372, x5232 (office hours: by appointment)

Wednesday discussion sections: 8:00, 9:00, 10:00, 11:00, and 12:00 UTEB 160

Teaching assistants: Hanan Elazhary, hanan@engr.uconn.edu
Narasimha Karpour, karpour@engr.uconn.edu
Hua Wang, wanghai@engr.uconn.edu
Tobias Wolfertshofer, tobi@engr.uconn.edu

Home Page: http://www.cse.uconn.edu/~robert/CSE207 (Watch this space!)

Text:
John F. Wakerly
Prentice Hall

Introduction

CSE 207 is the introductory course to Digital Logic Design, the first in a series of courses which address computer hardware, architecture, and system design. This course presents the fundamental theory behind digital design and provides the opportunity to apply this theory through fairly substantial 'paper' design projects. This course complements CSE 208W, which provides experience in implementing and simulating your digital hardware designs. CSE 208W should be taken concurrently with this course, as the two courses together deal with digital design theory and practice, and are fairly synchronized in their material.

CSE 207 is presented in lecture/discussion format. The TuTh lectures will cover the theory, methods, and issues introduced in the text. The discussions will provide an opportunity to clarify material, answer questions, and practice the application of the ideas presented in the book and in lecture. The discussions will also provide a forum for project feedback.

Lecture and discussions

As students, you are responsible for being prepared for lecture and discussion, understanding the material presented, and demonstrating your knowledge through design projects and examinations. The only written assignments are related to the projects: other written homework is not assigned. The text has examples, drill problems, and exercises which can be used to practice and learn. Solutions to some selected exercises will be made available as the semester proceeds.

All exams and assignments will be returned to you promptly in lecture or discussion. The workload for this course is distributed fairly evenly through the semester, but there is little slack time so it is important to keep up.
Attendance

Attendance at all lectures and discussions is expected, but as college students you are free to choose whether or not to attend each lecture and discussion. Regardless of your choice, you are responsible for all material and assignments presented in class, including schedule changes. It is expected that all those attending be settled and ready to start at the beginning of class. Late arrivals disrupt the class and reduce the time for learning. Changing sections must only be done by exchange with another student and with the permission of the instructor and discussion leader.

Grading

Exams will be graded by your instructor and the discussion leaders, projects will be graded by your discussion leaders. Your course grade will be based on your performance on these exam and project grades. These are considered separately and you must receive a passing grade in both to pass the course. The examinations will be based on classwork and specified reading and will be weighted as below. Projects are graded according to a marking scheme that will be discussed in section next week.

<table>
<thead>
<tr>
<th>Exam 1</th>
<th>40%</th>
<th>Project 1</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 2</td>
<td>40%</td>
<td>Project 2</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
<td>Project 3</td>
<td>45%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20%</th>
<th></th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each project grade is a weighted sum of individual grades for the introduction, problem decomposition, functional circuit description, circuit realization, testing, conclusions, and overall documentation and presentation.

The grading scheme has been chosen to give you the opportunity to excel and get credit for it. This works to the benefit of those who want to do really well. It also reinforces the idea that in the real world those who get ahead are the ones who give something extra.

Design Projects

The design projects are a very important part of this course. They provide you with an opportunity to apply the material discussed in class and in the reading assignments to realistic problems. Each project can have many different solutions, some better than others. Your TA or the instructor may offer you advice if you ask them. You will be judged on both the quality of your solution and the quality of the report you submit to document your design.

All project reports (preliminary, intermediate, or final) must be submitted at the lecture or discussion period indicated on the assignment. Late reports will be accepted subject to a late penalty of 10% per day (excepting the weekend, so a Friday assignment turned in Monday in class is considered 1 day late) unless approval has been given in advance by the lecturer. Such approval will only be given for special cases such as serious illness—failure to plan is not sufficient grounds for an extension. Reports must be submitted on time even if you cannot be present. Late reports should be submitted in person to the lecturer or either TA. Do not put late reports in the instructor’s or TA’s mailbox, and do not attempt to leave it in the departmental office.
Design Project Grading

A well-designed solution to a technical problem is of little value if the designer cannot describe the results to possible users of the design. Similarly an elegant presentation of a project cannot compensate for a poor technical design. The grading of each project will depend on both the technical design, which will be marked on the quality and depth, and on the way your report and work are presented.

It is expected that the report will be neat, readable, well-organized and written using proper grammar, punctuation and spelling. A typed or word-processed report is required. Logic and other diagrams must be machine generated—use LogicWorks to draw your diagrams (and to test your designs).

For your own use and security it is recommended that you save an (extra) electronic copy of your report before you hand it in.

Teamwork versus your own work

The design projects are meant to be comprehensive in nature and provide you with an opportunity to use your own judgement and insight in developing a solution. Various approaches will be presented in lecture and discussion. You will also probably discuss your ideas with other members of the class. This is normal and is not discouraged.

However, the final design you decide upon and your design report must be your own work. You should give credit to those with whom you discuss the project along the way, and you will turn in a signed declaration regarding your discussions with each project. If the final design and/or design report of two or more students is found to be too similar, the School of Engineering and University policies on academic misconduct will be invoked.

Incompletes

Except for very exceptional circumstances, your instructor will not give a grade of incomplete in this course. Such approval must be obtained before the final examination.

Getting help

Robert’s office is UTEB 372. For a quick question, drop by any time (although I may not be there, and I may be too busy at any particular time), for more extensive discussion schedule an appointment. Sending e-mail is the most reliable way to contact me, and allows me to give you a quick answer if possible, or forward your request to one of the TAs if appropriate.

Discussion leaders will hold regular oracle hours, time and place to be announced the first week of classes. E-mail is also useful to reach them.

The web page should provide useful, timely aid as well: design hints, copies of assignments, copies of exam solutions, and so forth.

My objective and that of the TAs is to help you learn as much as possible. We hope you share that objective, and we will try to be fair and accessible in helping you achieve this goal.

Robert McCartney