Loading Events

« All Events

  • This event has passed.

Ph.D. Proposal: Peng Wu

November 20, 2020 @ 10:00 am - 11:00 am EST

Title: Composite Resource Management in Networked ControlSystems

Student: Peng Wu

Major Advisor:  Dr. Song Han

Associate Advisors:  Dr. Sanguthevar Rajasekaran, Dr. Bing Wang

Date/Time: Friday, November 20th, 2020, 10:00 am


Meeting link: https://uconn-cmr.webex.com/uconn-cmr/j.php?MTID=m014f03f39ff71f943df64b1752fac928

Meeting number: 120 025 5758

Password: p3vGVneiG33

Join by phone: +1-415-655-0002 US Toll 

Access code: 120 025 5758



Networked control systems (NCSs) are fundamental to many safety- and mission-critical applications in a broad range of fields such as robotics, process and factory automation. Wide deployment of NCSs requires systematic design tools to enable efficient resource usage while achieving desired Quality of Service (QoS), which might be greatly affected by the inherent imperfections and limitations of the traditional periodic control paradigm, the existing scheduling models, and online resource reconfiguration framework. To address these issues, we explore the composite resource management methods for different scales of NCSs.

For a single NCS, we propose a self-triggered control method based on nonsingular terminal sliding mode control to guarantee the required control quality while minimizing the system resource utilization. To further improve the control performance, we introduce a nonlinear disturbance observer to estimate the external disturbance. With the proof of the system stability, the self-triggering condition based on the control tasks’ inter-execution time is established. This not only enhances the disturbance rejection ability but also allows the control system to sample in lower frequencies with a performance guarantee.

To deal with small-scale NCSs, we introduce a novel model for composite resource scheduling (CRS) in NCSs, which considers a strict execution order of sensing, computing, and actuating segments based on the control loop of the target NCS. We prove that the general CRS problem is NP-hard and focus on two special cases that are commonly presented in practical settings. The first case restricts the computing and actuating segments to have unit execution time while the second case assumes that both sensing and actuating segments have unit execution time. We propose a polynomial-time optimal algorithm to solve the first case by checking the intervals with 100% network resource utilization and modify the deadlines of the tasks within those intervals to prune the search. For the second case, we propose an exponential-time optimal algorithm based on a novel backtracking strategy to check the time intervals with the network resource utilization larger than 100% and modify the timing parameters of tasks based on these intervals.

Along with the ever-growing number of NCSs deployed in the same network and computing infrastructure but managed independently, the complete resource requirements from these NCSs are not known until run time and may also change during the system operation. There thus does not exist a global scheduler that has the full knowledge of how the resources are allocated among the tasks from individual NCSs. As the ongoing work, we propose a novel composite resource partition abstraction for the multi-resource environment which can be easily recursively re-partitioned. Based on the concept of composite resource partition, we study the online composite resource partition reconfiguration problem among large-scale NCSs.






November 20, 2020
10:00 am - 11:00 am EST

Connect With Us